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Abstract

Compositionality is undeniably a fundamental feature of language, and arguably, uniquely

human. For the last couple decades, compositionality has fruitfully been explored as a

product of cultural evolution, and has been seen as solving the opposing selection pres-

sures of expressivity and learnability (e.g., Kirby et al. 2008; Kirby et al. 2015). Fur-

ther, popular perspectives have echoed that these pressures reflect specific processes

of learning and use (Tamariz and Kirby, 2016) which are not necessary conditions for

the emergence of compositionality. By contrast, a largely unexplored and undertheo-

rised factor which affects the emergence of compositionality is the shape of the meaning

space. In this thesis, I attempt to map out part of these spatial variables in artificial lan-

guage learning, i.e., the structure of the meaning space, and how it relates to the emer-

gence of compositionality. I investigate two previously proposed ways of structuring the

(meaning) space: Smith et al. (2003)’s structure and Reeder et al. (2013)’s overlap. The

former minimises the semantic difference between objects in the meaning space while

the latter maximises equal distribution across it. Through an artificial language learning

experiment, I put the two proposals against one another to see how the two structural

configurations differ in the degree to which they allow for generalisation within a mean-

ing space. The results, though inconclusive, indicate that generalisation and learning in

general is easier in overlap spaces where semantic values are equally spread across.

This could suggest that overlap facilitates the emergence of semantic combinatoriality,

a prerequisite for compositionality, which in turn could arise as a consequence of spe-

cific parameters, e.g., number of semantic values and their relative degree of exposure.

Along with these specific parameters, I suggest that future research should focus on how

mechanisms other than generalisation contribute to different kinds of compositionality.
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Chapter 1

Introduction

Part of what defines us as humans is the emergence of language. Defining language,

however, is far less trivial. While some would mention aspects like metaphorical speech

(e.g., Ellison and Reinöhl 2022), however, if any trait defines language, it is a structural

one. One suggestion that has gained some ground is compositionality (e.g., Zuberbüh-

ler 2020, but see Hauser et al. 2002 for merge). This is the idea that the meaning of

an expression derives from the meaning of its constituents, i.e., meaningful individual

words in meaningful syntactic constructions. While a lot of human communication tends

to be highly compositional, there cannot be ‘turtles all the way down’, and at the bottom,

the constituents that make up a compositional expression must be holistic, i.e., an ar-

bitrary constituent-to-meaning mapping.(Griffiths and Kalish, 2007, p.465). Dictionaries

and theoretical views on the lexicon (e.g., Jackendoff 2003) are great examples of the

holistic parts that make up language. Further, the vast majority of animal communication

seems to be holistic (Zuberbühler, 2020), begging the question of why human language

is compositional at all. While it may not always have been so (e.g., Tallerman 2007; Ver-

hoef et al. 2012; Smith 2008), current theoretical explanations (e.g., Tamariz and Kirby

2016) suggest that compositional traits accumulate in response to two pressures: one

to be learnable; and one to be expressive. As I will argue at the end of this chapter

(see Section1.3), the latter assumes not just a sufficient number of meanings, but mean-

ings structured in a particular way so as to make compositionality useful. If like vervet

monkeys, the entire language consists of three alarm calls, each for a different predator,
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2 1.1. COMPOSITIONALITY

having holistic calls might prove easier to learn. In this thesis, I will talk a lot about sets of

linguistic units (e.g., words or meanings) as constituting spaces. I will particularly focus

on how structural relationships between units within such spaces contribute to the emer-

gence of compositionality. Like most of the research I refer to, my general framework is

one of cultural evolution (see, e.g., Mesoudi et al. 2006) where compositionality is seen

as an adaption to cultural pressures. Using an artificial language learning paradigm (see

Chapter 2 and 3), I test two predictions of how spatial structure affects the emergence of

compositionality. Subsequently, I discuss the implications of the results (see Section 4).

To start off, I will elaborate on what consititues compositionality.

1.1 Compositionality

Consider the following definition:

“[X is compositional if t]he meaning of [X] is a function of the meanings of its

parts and of the way they are syntactically combined.” (Partee, 1984, p.281)

In other words, we grasp the meaning of ‘house pig’, i.e., a pig normally kept in the

house: (a) because we understand the words ‘house’ and ‘pig’; and (b) because the way

they combine (c.f., ‘pig house’). Though similar notions have been around for over 1500

years (Pagin and Westerståhl, 2010), the definition above has its roots in philosophy,

most often attributed to Gottlob Frege’s principle of compositionality (Szabó n.d.; Gar-

avaso 2018). Frege himself reportedly stated that “the structure of the sentence serves

as an image of the structure of the thought" (Garavaso, 2018, p.106). In contrast to trans-

formational ideas of semantics asinterpretive, i.e., by definition deriving from a syntactic

basis, Frege suggests that syntax is constrained by structures of thought, akin to the in-

famous generative semanticists (Katz, 1970). In this sense, compositionality is a purely

semantic phenomenon, where meanings are compositional if derived systematically com-

bined semantic units. Though modern accounts enters from similarly semantic angles

(Pagin and Westerståhl, 2010), directly assessing a semantic system inside the mind is

not currently possible. Hence, we require an assumption like Frege’s that externalised

language reflects internalised structural properties (see competence in Chomsky 1986).

2



CHAPTER 1. INTRODUCTION 3

Consequently, I will treat compositionality as either internalised (i-compositionality ) or ex-

ternalised (e-compositionality ), the latter assuming an internalised equivalent (see Smith

2003 for similar terminology).

Further, I suggest that compositionality can be understood as semantic combinatoriality.

Take for instance birdsong, broadly considered to display combinatoriality (Suzuki, 2014),

i.e., systematic combination of acoustic notes (Zuidema and de Boer 2018; c.f., human

phonology). In the debate on whether birds display compositionality, both sides agree

that externalised syntax, i.e., the systematic combination of meaningful units, is needed

(e.g., Suzuki et al. 2019; Bolhuis et al. 2018), the disagreement primarily concentrated

in what is considered sufficient evidence. This is crucial because while compositionality,

i.e., semantic combinatoriality, could theoretically exist without an external compositional

language (Piantadosi et al., 2016), we rely on the use of a second combinatorial system

of meaningful forms, i.e., syntax. Hence, though semantic combinatoriality is enough in

an of itself in theory, a corresponding syntactic combinatoriality is necessary in practice.

The presence of these two systems could be thought of as a kind of duality of patterning

(Hockett 1960; de Boer et al. 2012). However, in the traditional sense, this consists of

one combinatorial system of meaningful units (e.g., words, phrases, clauses), built on

another combinatorial system of meaningless units (e.g., prosody, phonology, cherology

or other; see, e.g., Edwards 2014). The latter system, however, is not necessary for com-

positionality (e.g., compositional views in Arbib 2012). Rather, the duality of patterning

practically necessary to confirm compositionality is a regular mapping between a combi-

natorial semantic space and a combinatorial syntactic space. This mapping is not always

one-to-one such that syntactically combinatorial idioms are often semantically holistic in

natural language (e.g., ‘kick the bucket’ = DIE). Conversely, the the reverse is probably

possible, where holistic forms are semantically combinatorial (e.g., ‘bachelor’ = UNMAR-

RIED + MAN). However, this is difficult to assess. I will now turn to the contemporary

discussion of how compositionality evolves.

3



4 1.2. CURRENT DEBATE

1.2 Current debate

Emerging initially from a number of computational and mathematical models and simu-

lations (Hurford 2000; Kirby 2000a; Kirby 2000b; Kirby 2002; Zuidema 2002; Brighton

2002; Smith et al. 2003; Kirby et al. 2004; Brighton et al. 2005; Kirby et al. 2007; Griffiths

and Kalish 2007), and later spearheaded by two main studies with participants (Kirby

et al. 2008; Kirby et al. 2015), supported by further findings (e.g., Theisen-White et al.

2011; Beckner et al. 2017; Guo et al. 2019), compositionality has become known as a lin-

guistic property that emerges from “twin pressures of expressivity and learnability"(Spike

et al., 2016, p.1, emphasis added)‘. I offer the following definitions of these two abstract

pressures:

Expressivity:

Linguistic properties that allow speakers to distinguish between meanings (of

a certain number) accumulate over time.

Learnability:

Linguistic properties that are less cognitively straining accumulate over time.

Notice that the pressures essentially only point out that there is some process by which

languages become expressive and learnable. Though this follows naturally from ideas of

adaption in cultural evolution (Mesoudi and Thornton, 2018), the specific claims in theo-

retical discussions vary a lot. Some claims directly link compositionality to the abstract

pressures, talking about languages being “under pressure to be simultaneously informa-

tive (so as to support effective communication) and simple (so as to minimize cognitive

load)" (Kemp et al., 2018, p.111). However, often, the claims can narrow so that the

emergence of compositionality is linked to the specific implementations of models and

experiments. These claims shift the causal weight somewhat, so that compositionality

arises from ‘transmission’, ‘learning and communication’ Tamariz and Kirby (2016), “re-

peated episodes of learning and production" (Smith et al., 2013, p.1348) or ‘learning and

use’(Smith 2022; Smith 2018).

The latter phrase can be understood in both a broad and a narrow sense. As mentioned

in Smith (2022), learning favors simpler solutions and communicative use favors encod-

4



CHAPTER 1. INTRODUCTION 5

ing a useful set of distinctions, echoing the broad sense of the abstract pressures of

learnability and expressivity respectively (see upper schematic in Figure 1.1). However,

learning and use also corresponds to distinct experimental phases in Kirby et al. (2008)

and Kirby et al. (2015), making them easily associated with a more narrow procedural

sense. In Kirby et al. (2008), participants were asked to learn labels for images varying

in shape (3), colour (3), and movement (3), i.e., 3x3x3 meaning space (see Figures 1.1

and 1.3). The participants were organised in diffusion chains so that the labels produced

by one become the labels to be learned by another, effectively creating cultural chains of

generations of participants. In the learning phase, participants were only given a random

subset of the complete 3x3x3 space, while in the production phase, they had to produce

labels for the entire space. Thus, a learnabiity pressure was simulated by it being im-

possible for them not to learn every image-label combination. Further, in their second

experiment they filtered out any homonyms so that every distinct image always had a dis-

tinct label, simulating an expressivity pressure. Kirby et al. (2015) furthered this work with

some modifications, mainly that instead of manually filtering out homonyms, they paired

participants up in a communication game simulating a more natural pressure to have dis-

tinct labels (see Figures 1.1 and 1.3). Both found that compositionality emerged when

both pressures where active 1. Crucially, however, ‘learning and use’ are easily separa-

ble in these experiments. For ‘learning’, both implementations restricted learnability to a

subset of meanings, and for ‘use’, both required distinct labels to be transmitted from one

generation to another, ensuring expressivity. This narrower sense of ‘learning and use’,

associated with a specific kind of transmission most likely goes back to Hurford’s idea of

the arena of use (1990; 2000) citing Anderson (1973, as illustrated in Figure 1.2. In the

following section, I will show how this narrow sense can be somewhat problematic.

1They measured compositionality based on Brighton et al. (2005) looking at the degree to which the
Hamming distance (1950) between two meanings mirrored the Levenstein distance (1966) between the
equivalent label strings.
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6 1.3. PROBLEMS

1.3 Problems

1.3.1 Sufficient but not necessary conditions

This high-level theoretical discourse, surrounding the significance of these two pressures,

seems to suggest that the necessary conditions for the evolution of compositionality are

the abstract twin pressures (learnability and expressivity), or more narrowly, specific pro-

cesses of learning and use. owever, it would be a mistake to link the learnability pressure

to its specific implementation, i.e., cultural transmission in the form of chains of partic-

ipants required to produce more expressions than they are initially trained on. Rather,

it is important to keep claims about the specific experimental implementation separate

from claims about the linguistic processes it represents. Most theoretical discussions are

good at pointing this separation, arguing, e.g., that "[i]n the real world, learning and use

are, of course, not as clearly separated" (Smith, 2022, p.183). However, sometimes the

narrow view prevails. For instance, Raviv et al. (2019) argue that Kirby et al. (2015) claim

“that compositional languages can emerge only when languages are transmitted across

multiple generations"(Raviv et al., 2019, p.151, emphasis added). They then go on to

demonstrate how compositionality can emerge ‘in a single generation’ with a continuously

expanding meaning space, i.e., introducing new meanings as the experiment progresses,

thus simulating a learnability pressure without Kirby et al. (2015)’s diffusion chains (see

also Selten and Warglien 2007; Winters et al. 2018). Raviv et al. (2019)’s mistake, or the

mistake they claim Kirby et al. (2015) made, is the assumption that the pressures lead-

ing to compositionality requires a specific kind of transmission. Conversely, associating

compositionality with specific pressures also causes the reverse, i.e., ignoring the causal

contribution of other crucial aspects of the experimental design. In this sense, I argue

that the structure of the meaning space is largely unexplored.

1.3.2 Exhaustive meaning spaces

Consider the meaning spaces in Figure 1.3. All these meaning spaces are taken from ex-

periments supporting the idea that compositionality emerges under pressures of learning

(or learnability) and use (or expressivity). However, most tend to have meaning spaces

6



CHAPTER 1. INTRODUCTION 7

bigger than 10 object-label pairs, with 2-3 dimensions (e.g., shape, colour) with 2-3 values

each (square, blue). While this uniformity partially comes from artificial language learning

being a fairly young (see Folia et al. 2010 for an overview), it largely arises from practi-

cal considerations, e.g., geometric stimuli being easier to generate than complex visual

scenes. Yet, one common denominator I argue is particularly underrated is the exhaus-

tive manner with which every possible combination of values in different dimensions fill

the space. As seen in Figure 1.4, the meanings are structured in thematic groups. How-

ever, there are no explicit semantic relationships between a meaning from one group,

and a meaning from another. However, in studies related to the emergence of compo-

sitionality, values and dimensions combine exhaustively such that the meaning space is

maximally filled (see Figure 1.3). This matters for two reasons. First, the underlying se-

mantic combinatoriality in the meaning space, is a prerequisite for compositionality (see

Section 1.1). For instance, it would be impossible to make a compositional language out

of the meaning space in Figure 1.4 unless the meaning space itself was restructured into

something properly combinatorial. Second, and more importantly, natural languages do

not look like this. Rather, they are irregular (e.g., Kirby 2001; Smith et al. 2023) and varied

in where and how much compositionality there is.

1.4 Nonexhaustive meaning spaces

1.4.1 Natural complexity

Consider the following meaning space:

Sheep Dog

Happiness “happy sheep" “happy dog"
Fluffiness “fluffy sheep" “fluffy dog"

Table 1.1: Example of real compositional space

In Table 1.1, the meaning space, and the real English form space, are both composi-

tional, i.e. there is both i- and e-compositionality. Now, imagine if I decided to talk about

the largest and smallest breeds of various species, temporarily constructing a semantic

space like Table 1.2:

7



8 1.4. NONEXHAUSTIVE MEANING SPACES

Sheep Dog

Largest breed Suffolk Mastiff
Smallest breed Ouessant Chihuahua

Table 1.2: Example of a nonreal semantic space

However, the forms remain holistic. If put into an artificial language learning experiment,

it might be that participants would develop a compositional system, but the real world

meaning space in which these animal names exist, is far more complex. For instance,

Suffolk sheep are thought of as far more than the largest sheep breed. Their coat pattern,

wool texture, and lack of horns is far more distinct to any sheep farmer. Similarly, English

Mastiffs have incredibly characteristic faces, Ouessants are known for their regional ori-

gin, and Chihuahuas are famous for their temperament and accessory function. Thus, a

more natural meaning space, unlike the exhaustive meaning spaces in Figure 1.3, would

look more like the following:

Sheep Dog Rhinoceros

Four horns Manx Loaghtan ??? ???
Two horns Suffolk ??? White rhino
One horn ??? ??? Indian rhino
Zero horns Adal Chihuhua ???

Table 1.3: Slightly more realistic semantic space

In Table 1.3, though the values of the two dimensions do combine, they do not do so

exhaustively. All compositional systems are dependent on a holistic base similar to a

lexicon and so it is not surprising that names for sheep breeds will often be holistic.

However, given that the degree to which a meaning space is filled is a gradient, at some

point between Table 1.3 and the meaning spaces in Figure 1.3, compositionality should

emerge. I will now turn to two studies that are relevant to answering this question.

1.4.2 Smith et al. (2003)

An early exploration of these structural traits in meaning spaces can be found in a study

by Smith et al. (2003) which offers the following reflection:

“[I]n compositional languages the structure of signals reflects the structure of

8



CHAPTER 1. INTRODUCTION 9

underlying meanings, and if the underlying meanings are unstructured then

compositionality is immediately ruled out. Structured semantic representa-

tions therefore form a necessary, but not sufficient, condition for the cultural

evolution of compositional language." (Smith et al., 2003, p.545)

The structure they refer to here was implemented as a variable of a meaning space

where the average intermeaning Hamming distance (henceforth AIHD) is minimised. For

them, given a meaning space of 5x5x5 (three dimensions and five values), of which only

a subset of meanings are used, the maximally structured meaning space forms a solid

block, while the maximally unstructured resembles more of a randomly scattered cloud

of meanings (see Figure 1.5). They present data with a thousand independent runs of

an iterated learning model allowed to progress until a stable state using the spaces in

Figure 1.5. Overall they find that though compositional languages are rare, high compo-

sitionality only occurs when the meaning space is structured. Further, they suggest that

this arises as a consequence of the higher proportion of shared values in the structured

spaces as compared to unstructured ones, which follows naturally from minimising the

AIHD. However, their structured meaning spaces also include fewer values overall, i.e.,

less semantic complexity in general and not just that the average pair of meanings share

more values. This is clear if we consider spaces (a) and (b) in Figure 1.5, where while

(b)’s configuration needs nothing beyond a 2x2x3 space, (a) almost includes every value

in the 5x5x5 space. To test whether compositionality is really ruled out in unstructured

spaces, one would have to compare two spaces that are equal in how many values they

display overall, but different in their AIHD. Further, another issue is the iterated learning

paradigm. One could simply convert Smith et al. (2003)’s model to a very comparable

iterated learning experiment with participants. However, though e-compositionality could

evolve, i.e., the syntactic appearance of semantic combinatoriality, it is unclear whether a

participant at any given time would develop an internalised compositional understanding

of the meaning space. Rather, examining i-compositionality, i.e., real semantic combina-

toriality, would only require a paradigm that simply trains participants on compositional

forms from subsets of a shared compositional meaning space and then tests their ability

to generalise to the rest of the meanings. The following study, happens to have such a

9



10 1.5. SYNTHESIS

paradigm.

1.4.3 Reeder et al. (2013)

Reeder et al. (2013) published their study a decade after Smith et al. (2003), with the goal

of seeing whether participants could form syntactic categories based purely on (meaning-

less) distributional information. Through a number of experiments, they tweak variables

like Smith et al. (2003)’s density, but crucially, they also vary the structure of the space

under the term overlap. The idea of ‘overlap’ comes from the observation that language

users are sensitive to distributional information, suggesting that (syntactic) categories can

be formed by “generaliz[ing] across [all] lexical items [in a space] (indicating that gaps [in

shared distributional information] are likely to be accidental)"(Reeder et al. 2013, p.43).

To explain overlap, they utilise a number neat schematics (see Figure 1.6). Through a

series of experiments, they trained participants on different subsets of their syntax space,

consisting of strings of letters functioning as (meaningless) words. Each string consisted

of three words, where each word position could take a number of unrelated forms (three

for Experiments 1-4). Consider Figure 1.7. They found that when participants are trained

on a subset with complete overlap, where every word type is seen with every other word

type, as seen in Figures 1.6 and 1.7a, they are more able to generalise to the entire

space. However, when the training subset deviates from complete overlap, generalisa-

tion decreases2 . I will now consider how these studies relate to one another.

1.5 Synthesis

Though Reeder et al. (2013)’s paradigm does not directly address the issue of how com-

positonality emerges, their overlap measure does target a core ability responsible from

compositional understanding, i.e., the ability to generalise (e.g., baroni2020). Further-

more, they do this in an artificial language learning paradigm very similar, especially in its

space design, to previous work on the emergence of compositionality (see Figure 1.3).

Conversely, Smith et al. (2003) is not an artificial language learning experiment at all, but

2Generalisation was measured by grammaticality judgements, i.e., how acceptible they found a set of test
strings.

10



CHAPTER 1. INTRODUCTION 11

a computation model. However, in common, both provide a measure of how to ideally

structure a space for the desired combinatorial system to emerge. I offer the following

definitions based on the authors’ descriptions:

Structure:

“[organising the subset of semantic units in a space] in such a way as to

minimize the average intermeaning Hamming distance" (Smith et al., 2003,

p.549)

Overlap:

Organising a subset of (semantic) units in a space in such a way as to disallow

for subcategories larger than one unit to form.

Interestingly, though not obvious from their definitions, it so happens that these measures

are fairly at odds with one another. Consider Figure 1.8. Compare the cubes in Figure

1.5 from Smith et al. (2003)’s conditions, to my illustration of Reeder et al. (2013)’s con-

dition in Figure 1.7, and Figure 1.8 which includes Smith et al. (2003)’s structure adapted

to Reeder et al. (2013)’s space. First, since all the spaces consist of three dimensions,

each schematic could be seen as a three-dimensional cube. Second, unlike Smith et al.

(2003)’s spaces in Figure 1.5, the space conditions in Figure 1.8 includes the same num-

ber of features overall while still remaining either maximally structured or having complete

overlap. Further, compared to the structured space (AIHD = 1.72), the complete overlap

space is very unstructured, if not perfectly randomised to scatter over the entire space

(AIHD = 2.22, however, c.f. partial overlap AIHD = 2.25). Conversely, a structured space

like that in Figure 1.8 is far from complete overlap, with an overlap pattern best repre-

sented in Figure 1.9 (c.f., Figure 1.6). Though Smith et al. (2003) provide useful sug-

gestions for the underlying mechanisms that give rise to compositionality (e.g., average

shared values through AIHD), Reeder et al. (2013)’s discussion of overlap is somewhat

more mysterious. They focus a lot on language users’ perception of gaps, i.e. that the

language users perceive the fact that X-words are not seen with specific A- and B-words,

i.e., gaps. By contrast, in the complete overlap condition, where each X-word is seen at

least once with every kind of A- and B-word, there are no gaps (see Figure 1.6). Thus,

it seems that overlap does not make generalisation easier; rather, it makes subcategori-

11



12 1.5. SYNTHESIS

sation impossible, so that if a generalisation occurs, it occurs across the entire space.

Though both have been applied to facilitated the correct spread of some combinatorial

system, this is from quite distinct angles, making them not necessarily mutually exclusive.

However, as indicated by the discussions in Smith et al. (2003) and Reeder et al. (2013),

each measure seems to represent the other’s theorised opposite (either an unstructured

space or a partial overlap space). Hence, one of the theories could have the wrong idea

of exactly how their measure works (see Section4.4). The following chapter details the

resulting experiment where I put the measures up against one another.

12



CHAPTER 1. INTRODUCTION 13

Figure 1.1: Illustrations of learning and use from Smith (2022). The upper schematic is
a more abstract representation. The middle schematic is taken from Kirby et al. (2008),
Experiment 1, Chain 4, where participants were asked to learn labels for colored mov-
ing shapes. The lower schematic is taken from Kirby et al. (2015) Chain Aa. In this
experiment, participants learned labels for patterned shapes, and was paired up in a
communication game. In both Kirby et al. (2008) and Kirby et al. (2015), the production
of one generation was given as learning input for the next.

13



14 1.5. SYNTHESIS

Andersen (1973) Hurford (1990)

Figure 1.2: Early schematics of processes of learning and use in language. Hurford
(1990) cite’s Andersen (1973) as a source for his schematic. Both schematics implies a
simple form of transmission.

Perfors and Navarro (2014) Raviv et al. (2019)

Kirby et al. (2015) Kirby et al. (2008)

Beckner et al. (2017) Carr et al. (2017)

Figure 1.3: Meaning spaces from various studies on compositionality. In all of these
spaces, every value of every dimension combine exhaustively, i.e., every possible imag-
inable meaning within the space could be relevant to the participant.

14



CHAPTER 1. INTRODUCTION 15

Figure 1.4: Schematic of meanings in Fay et al. (2010).

Figure 1.5: Meaning space variation according to ’structure’ and ’density’ in Smith et
al. (2001). ‘Structured’ spaces, (b) and (d), follows the minimization of the AIHD while
‘dense’ spaces, (a) and (c), refers to the number of meanings in the space.

Complete overlap Partial overlap

Figure 1.6: Degrees of overlap between X-words in Reeder et al. (2013)’s 3x3x3 syntax
space in Experiments 1-4. A, X, and B, refer to the first, second, and third word position
respectively. In complete overlap, every word in the X-position is seen with every word
in the A position and every word in the B-position. In partial overlap, each X-word is
specifically never seen with one word in each position.

15



16 1.5. SYNTHESIS

(a)
Complete overlap

(b)
Partial overlap

Figure 1.7: Training subsets a 3x3x3 space converted from Table 2 in Reeder et al. (2013)

Structured space Overlap space

Figure 1.8: Experiment conditions, each based on subsets according to each measures
in a 3x3x3 space. Semantic annotation converted directly from Reeder et al. (2013). See
more on the semantic annotation in Figure ??.

two of the three dimensions one of the three dimensions

Figure 1.9: Contextual overlap pattern by feature in the structure condition. Here, a word
type (X) of any given position will be seen with, either: every kind of the two other words
around it ( = 3/3, see the upper X-words); 1/3-2/3 of each word type (depending on the
dimension, see middle X-words); or 1/3 of each word type (see lower X-words).
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Chapter 2

Methods

To explore the effects Smith et al. (2003)’s structure and Reeder et al. (2013)’s overlap

have on the development of language users’ compositional understanding (i-compositionality),

I designed an artificial language learning experiment where participants are exposed to

perfectly compositional languages. They are asked “to learn a language aliens use to

describe each other" consisting of image-label pairs, and are initially trained on subsets

corresponding to the structure and overlap measures respectively, and later asked to pro-

duce labels for the entire space of images. I built the experiment using the jsPsych library

of Javascript for designing behavioural experiments in a web browser (de Leeuw, 2016).

Further, the initial scaffold of the experiment was based on a template by Smith (n.d.).

2.1 Participants

Participants were obtained through the online crowdsourcing platform Prolific, and com-

pleted the experiment on average after 20-35 minutes, for which each was paid 5.5£,

aimed towards current minimum wage (https://www.gov.uk/national-minimum-wage-rates).

Data from 52 participants were collected in total, 26 in the overlap condition and 26 in

the structure condition. All participants self-reported to be over 18 in addition to having

English as their native first language. Prolific also initially filtered for profiles that aligned

with these criteria.
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18 2.2. MATERIALS

2.2 Materials

In the experiment, the artificial language consisted of two parts: (a) a set of objects; and

(b) a set of individual labels mapped one-to-one to each object.

2.2.1 Semantic space

I obtained a set of objects from Jia Loy filtering out 27 illustrations of aliens varying in

specific aspects. Consider the conditions in Figure 2.1:

structure overlap

Figure 2.1: Meaning spaces, one with aliens, and one wiyth corresponding semantic an-
notation from Figure 1.8. The first number refers to mouth-values, the second headgear-
values, and the third tail-values. The mapping was arbitrarily chosen.

As seen in the figure above, the aliens share similarities in body shape, eyes, feet, and

skin. However, their mouths, headgear, and tails (i.e., the dimensions) vary systematically

along the dimensions (see, e.g.,smile, frown, and surprise, in the vertical mouth dimen-

sion in Figure 2.1). There are three dimensions with three values each, i.e., 3x3x3 = 27

different aliens, directly applicable to the design in Reeder et al. (2013)3. The number of

dimensions and values of the two conditions (see Figure 1.8) are taken from Reeder et al.

(2013) as it was easier to apply structure, i.e., minimised AIHD, to a 3x3x3 space than to

3Initially, I planned to include a syntactically non-encoded fourth distractor dimension (c.f., Reeder et al.
2013’s Experiment 5). However, due to priorities in time, this was not implemented.
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apply overlap to Smith et al. (2003)’s 5x5x5 space. Notice that in contrast to Smith et al.

(2003)’s structured space, my structured space also includes every kind of value along

the three dimensions so that its effect can be distinguished from the effect of the specifi-

cally structured configuration of the space. This will also allow participants to generalise

to the entire space (in theory).

2.2.2 “Label" space

To have labels be both parseable and alien, I utilised a syllable transition matrix (Pankratz,

2023), which counted the number of transitions in an English corpora between different

syllables. Consider Table 2.1

Dimension A Dimension B Dimension C

Value 1 za xa ja
Value 2 zi xi ji
Value 3 zu xu ju

Table 2.1: Syllables selected for general low attestation in English and specifically for low
frequency of transitions.

In Table 2.1, there are 9 syllables that can be combined into 27 trisyllabic words. Each of

the syllables were found to be very infrequent but not absent from English, which was also

the case for the syllable transitions (‘xaja’ and ‘xiji’ attested once). Additionally, the con-

sonants were selected for sharing phonological aspects in spoken English (fricatives or

affricates), and the vowels (‘a’, ‘i’, ‘u’), and syllable pattern (CVCVCV) followed common

typological systems (Gordon, 2016, Chapter 3-4). The below is the entire label space

(27):

zaxaja, zaxaji, zaxaju, zaxija, zaxiji, zaxiju, zaxuja, zaxuji, zaxuju,

zixaja, zixaji, zixaju, zixija, zixiji, zixiju, zixuja, zixuji, zixuju,

zuxaja, zuxaji, zuxaju, zuxija, zuxiji, zuxiju, zuxuja, zuxuji, zuxuju

Now, I will turn to how these were mapped onto the aliens.
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20 2.3. PROCEDURE

2.2.3 Pairing aliens to labels

To avoid potential concerns of a predetermined object-label mapping for all participants

(e.g., Cuskley et al. 2017), the mapping was automatically randomised on two sepa-

rate levels. First, each semantic dimension randomly corresponded to a syllable position

characterised by an onset consonant (z-, -x-, and then -j-), yielding 6 different dimension

mappings. Additionally, each value randomly corresponded to a vowel within a syllable

position, yielding 6 different mappings. Thus, this totals 6x6x6x6x6x6 = 46656 potential

languages (see examples in Figure 2.2). I will now turn to the procedure of the experiment

as a whole.

000
-
TAIL-HEADGEAR-MOUTH
zixaja
-
MOUTH-HEADGEAR-TAIL
zuxuji
-
HEADGEAR-TAIL-MOUTH
zuxaji

001
-
-

zaxaja
-
-

zuxuja
-
-

zuxuji

010
-
-

zixija
-
-

zuxaji
-
-

zaxaji

Figure 2.2: Alien-label pairings with examples of different orders of semantic dimensions.
The ’spike-tail’-value is underlined and in bold. The specific language is randomly gener-
ated.

2.3 Procedure

Having accepted the task listed on Prolific, the participants were be redirected to the ex-

periment via a link. After some initial instructions, the participants started Round 1. Each

round consisted of three blocks of the same learning trials: (1) observation; (2) picture-

selection; and (3), training production. In every block, the participant interacted with the 9
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image-label pairs from their specific condition (see Figure 2.1). In the observation block,

participants were shown images of the alien with corresponding labels (see Figure 2.3).

This was followed by a forced choice picture-selection block, where participants shown

a label had to click on one of two randomly ordered aliens, one being correct and the

other a foil selected randomly from the rest of the 26 aliens (see Figure 2.4). Then, in the

training production block, participants were shown an alien and were asked to construct

the correct label using 9 buttons, one for each syllable type. The syllable buttons were

initially randomised for each participant but retained one order throughout the experiment

(see Figure 2.5). Further, for every picture-selection and training production trials, partici-

pants were feedback (‘CORRECT’ or ‘INCORRECT’), followed by exposure to the correct

object-label pair, similar to observation trails. The learning phase consisted of 4 of these

three-trial type rounds4. After the learning phase, a short testing phase ensued, where

the participants were given production trials for the entire language (27). Here they were

not given any feedback. Among other data, the experiment saved whether or not the

picture chosen or label produced was correct (see Section 3.2.1), as well as which labels

were produced exactly (see 3.2.2).

2.4 Hypothesis

Since it was unclear to me how exactly these two measures would affect the emergence

of compositionality (see Section 1.5), I ended up with the following open hypothesis:

Hypothesis:

There will be a statistically significant difference between the conditions with

regard to the ability to generalise.

4I initially ran a pilot where 9 participant had 3 of these three-trial type rounds. However, it seemed that
most here struggled to learn anything at all (see Chapters 3 and 4), and hence I increased the round number.
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22 2.4. HYPOTHESIS

Figure 2.3: Screenshot from observation trial.

Figure 2.4: Screenshot from picture-selection trial.
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Figure 2.5: Screenshot from production trial.
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Chapter 3

Results

To analyse the data, I utilise R (2023). I will mostly consider the data from the testing

trials, but to get an initial idea of what the data looks like, and to see how much the

participants learned in general, I will first consider the data from the learning phase.

3.1 Learning trials

The first measure I consider is accuracy, i.e., whether the label produced was exactly the

correct label or not. As seen in picture-selection trials in Figure 3.1, participants in both

conditions seem to get better at choosing the correct picture.

As shown in Figure 3.2, in the left plot, participants’ mean accuracy increases over

rounds. Yet, by the fourth round the mean production accuracy is still below 50% (see

Chapter 4 for more on chance levels). However, it is interesting that participants in the

overlap condition seem somewhat more proficient here.

In the plot to the right, I consider a second measure, i.e., edit distance between the la-

bels the participants produced and the correct labels. Specifically, I use the Levenstein

distance (1966) provided by the stringdist package (van der Loo, 2014) to account for the

few times participants produced labels of different lengths. However, otherwise, Ham-

ming (1950), Damerau-Levenstein (Brill and Moore, 2000), and Optimal String Alignment

(Yujian and Bo, 2007) provided virtually identical numbers. Overall, for each round means

Levenstein distance decrease indicating that participants produce labels generally closer
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to the correct ones, with participants in the overlap condition appearing marginally mpre

proficient. I will now turn to the testing trials.

overlap structured

1 2 3 4 1 2 3 4

0.00

0.25

0.50

0.75

1.00

rounds

accuracy

0

1

Figure 3.1: Amount of accurate picture selection choices for each round by condition.

overlap structured
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Figure 3.2: Means in training production. In the plot to the left, overall accuracy propotions
for each round are shown by condition. In the plot to the right, the small dots show each
participant’s mean Levenstein distance from the correct label while the larger black dot
show their overall mean.

3.2 Testing trials

3.2.1 Accuracy

First of all, what became immediately clear was that participants did not learn very well

generally. As seen in Figure 3.3, generalising to novel aliens was more difficult and

participants in the overlap condition did better overall, not because the did slightly better
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all the time, but because a greater number of participants produced most of their labels

accurately, while people in the structure condition failed completely more often.
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Figure 3.3: Mean accuracy in each condition. Coloured dots represent each participant’s
mean while the black dots indicate the mean per condition.

Further, I fitted a linear model using a Bernoulli distribution (i.e., binomial, or logistic

regression) to our measure ‘accuracy’, that is, whether the label produced was exactly the

correct label (accuracy = 1) or not (accuracy = 0). As predictors, I included: ‘condition’,

i.e., whether the participant that produced the label was trained on the overlap subset

or the structure subset; and ‘familiarity’, i.e., whether the alien was familiar or novel. I

included an interaction between condition and familiarity. The predictors were coded with

treatment contrasts and the first level mentioned above was set as the reference level. To

account for individual variance, I included random intercepts by participant 5. According

to the model (see Table 3.1), at baseline, i.e., when the participant labels a familiar alien

having been trained on an overlap space, the log-odds of producing the correct label is

–0.13, which is equivalent to a probability of 46.9%(SE = 0.92, z = -0.14, p > 0.05). The

log-odds difference between the intercept and labelling a novel alien is -1.17, which when

added to the baseline yields –1.30, equivalent to a probability of 21.4% of generalising

correctly when a participant in the overlap condition labelled a novel alien (SE = 0.32,

z = -3.70, p < 0.05). The log-odds difference between the intercept and the structure

condition is –2.29, which when added to the baseline yields –2.41. This means that the

probability of producing the correct label for familiar aliens in the structure condition is

5This is the maximal random effect structure possible, because the between-subjects design did not
permit me to also include by-participant random slopes.
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0.08% (SE = 1.36, z = -1.68, p > 0.05). To figure out the the probability of producing a

correct label for novel aliens for participants in the structured condition, I added all the

estimates together, yielding -4.15 in log-odds, equivalent to 0.02% (SE = 0.37, z = -1.22,

p > 0.05). Only one difference had a probability of less than 5% of being a fluke, i.e.

had a significant p-value, namely the difference between the labelling familiar and novel

aliens in the overlap condition. The predictions of the model are shown in Figure 3.4.

Table 3.1: Summary of the accuracy model’s estimates

Estimate Std. Error P-value

Intercept: -0.13 0.92 0.89
overlap+familiar
Condition: -2.29 1.36 0.09
structure+familiar
Familiarity: -1.17 0.32 <0.01
overlap+novel
Interaction: -0.57 0.47 0.22
structured*novel
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condition
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cy familiarity

familiar

novel

Predicted probabilities of accuracy

Figure 3.4: Predictions of the mean accuracy model with 95% confidence intervals.

3.2.2 String metrics

In Figure 3.5, two plots show Levenstein distances between the correct labels and the

labels produced. Similar to accuracy (see Figure 3.3), participants’ mean cluster more on

longer distances in the structured condition and with novel aliens. This suggests that par-

ticipants are somewhat better with familiar aliens and when they are trained on an overlap
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space. I fitted a linear model with a Gaussian distribution to the log of the Levenstein dis-

tances between the correct labels and labels the participants produced. I used the log

since the edit distance contains positive-only values (by definition), and therefore cannot

be modelled with a Gaussian distribution. The 0-length edit distances were replaced with

a reasonably low 0.1-length so as to transform properly. Again, as predictors, we included

‘condition’ and ‘familiarity’, random intercepts by participant, predictors being coded with

treatment contrasts where the first level mentioned here was set as the reference level.

P-values were obtained with the lmerTest package Kuznetsova et al. (2017) using the

Satterthwaite’s approximation of degrees of freedom. According to the model (see Table

3.2), when in the overlap condition labelling a familiar alien, the baseline mean log of the

Levenstein distance is –0.61, equivalent to an edit distance of 0.54 (SE = 0.25, df = 52.87,

t = –2.49, p < 0.05). The difference between the intercept and labelling a novel alien is

0.24, which added to the baseline, gives us -0.38, equivalent to an edit distance of 0.69

(SE = 0.06, df = 1337.02, t = 3.87, p < 0.05). The difference between the intercept and

the structure condition is 0.47, which added to the baseline, gives us -0.15, equivalent to

an average edit distance of 0.86 (SE = 0.25, df = 52.90, t = 1.34, p > 0.05) for a partic-

ipant trained on a structured space labelling a familiar alien. To figure out the average

edit distance for participants in the structured condition labelling novel aliens, I added all

the estimates together, yielding 0.20 in log-odds, equivalent to 1.23 letters off from the

correct label (SE = 0.09, z = 1337.02, t-value = 1.31, p > 0.05). These results show that

though participants in the overlap condition generally seem to do produce labels closer

to the correct label than that of their structure-trained counterparts, the difference is not

significant. Again, the only difference that had a probability of less than 5% of being a

fluke, i.e. had a significant p-value under 0.05, was between labelling familiar and novel

aliens in the overlap condition. The predictions of the model are shown in Figure 3.4.

Now, I will turn to the implications of these results.
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Figure 3.5: Levenstein distances plotted by condition. The coloured dots represent each
participant’s mean while the black dots show mean per condition.

Table 3.2: Summary of the string metrics model’s estimates

Estimate Std. Err. P-value

Intercept: -0.61 0.25 0.02
overlap+familiar
Condition: 0.47 0.35 0.19
structure+familiar
Familiarity: 0.24 0.06 <0.01
overlap+novel
Interaction: 0.11 0.09 0.19
structured*novel

−1.0

−0.5

0.0

0.5

overlap structured
condition

lo
g_

le
ve

ns
te

in

familiarity

familiar

novel

Predicted values of log_levenstein

Figure 3.6: Predictions of the mean Levenstein distance with 95% confidence intervals.
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Chapter 4

Discussion

4.1 Significant differences

Only two significant p-values were found, both showing a significant difference between

labelling familiar aliens and labelling novel aliens in the overlap condition. While partic-

ipants in the overlap condition seem to do better overall, no significant differences were

found between the conditions. In other words, being trained on an overlap space did

not produce a statistically significant improvement in learning from the structure condition

to the overlap condition. Rather, familiarity happened to become a significant predictor

within the overlap condition. Thus, my hypothesis is unambiguously wrong (see Section

2.4) 6. However, there are some interesting nonsignificant differences.

4.2 Nonsignificant differences

Often, p-values are overrated in their statistical power (Wagenmakers 2007; Gigerenzer

2004), and because of this, other indicators are often ignored. In our case, the estimates

happen to be fairly informative. Consider the testing phase where the participants had to

generalise to novel aliens. While in picture selection a random pick would be correct 50%

of the time (see Section 2.3), producing the correct label is a bit more complex. Since

6One might point out that I could have stumbled upon the multiple comparisons problem (Gelman et al.,
2012) raising the probability that a false positive could be found. In my case, applying the Bonferroni Correc-
tion (Gelman et al., 2012) would produce a 0.025 threshold (c.f., 0.05), and hence not change much.
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there was no limit to the produced label’s length, if the participant learned nothing (which

is unlikely) their alternatives would be infinite, and hence, chance would be incalculably

small. However, if at the very least participants noticed that all labels were three syllable

long, potential productions would number 9x9x9 = 729 (chance = 1/729 = 0.1%). Further,

they could notice the constant consonant order (z-x-j-), thus making potential productions

3x3x3 = 27 in total (chance = 1/27 = 3.7%). With this in mind, its interesting to note that

while participants trained on overlap spaces had a 21.4% chance of being completely cor-

rect, being on average 0.69 letters off, participants trained on structured spaces only had

a 0.02% chance of being accurate, on average 1.23 letters off. It is particularly striking

that they performed as if they neither learned the length nor the consonant pattern. Now,

since I failed to reject the null hypothesis through the significance tests, these differences

do not mean much on their own, and have at least a 5% chance of being a fluke. However,

in the case that this is representative, I now turn to the implications these results have

for the emergence of compositionality, though comfortable with due uncertainty (Vasishth

and Gelman, 2021).

4.3 Implications for the emergence of compositionality

4.3.1 Generalisation as Sudoku

If the nonsignificant indications of the condition differences represent real relationships

in natural language, what would it mean for how the (meaning) space predicts the emer-

gence of compositionality? Consider Figure 4.1 below, and the following idea I will call

the Sudoku-hypothesis.

Structured space Overlap space

Figure 4.1: Ideal learned meaning spaces for participants in each condition. The red
spots exemplifies potential differences in generalisation difficulty (the upper = 021, the
lower = 102). See Figure 2.1 for semantic space reference.
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Similar to a game of abstract three-dimensional Sudoku, in the testing phase, each par-

ticipant must create labels for the aliens in the white spaces, e.g., the red spots. Consider

for instance the lower red spots (102). In the overlap space, the participant could draw

information from six other different objects-label pairs, three for each value: for the ini-

tial 1– value, 122, 110, 100; for the -0- value, 002, 101, 200; and for the –2, 002, 212,

122. However, in the structured condition, though they can also draw from six different

object-label pairs (000, 100, 200, 201, 202, 110), five of them share the -0- value. Now,

if I interpret Reeder et al. (2013) correctly in that complete overlap can prevent subcat-

egorisation, then theoretically, participants in my structured condition could construct a

separate two-dimensional meaning space for the aliens that share the -0- value. If so,

since this two-dimensional space is more ’filled’ relative to the larger three-dimensional

space of the overlap participants, then participants in the structured condition could be

better at generalising to this exact spot. Compare this to the upper red spot (021). For

participant in the overlap condition, the task is identical. However, in the structured con-

dition, there are only 3 different object-label pairs to draw from, one for each value: 000

shares 0–; 220 shares -2-; and 211 shares –1. Generalising would barely be plausible

without already having generalised to the rest of the space, if not impossible if the par-

ticipant has constructed separate two-dimensional subspace categories 7. However, as

seen in Figure 4.2, there is no immediate indication that there is any difference between

those two novel objects in any condition.

4.3.2 Compositionality as a key to learning

Alternatively, my earlier interpretation of Reeder et al. (2013) might be mistaken such

that, while doing this abstract three-dimensional Sudoku, forming any category is difficult

without complete overlap. In this case, it could be that the equal spread of semantic val-

ues provided by the overlap measure makes it easier to categorise values individually.

Conversely, the AIHD of the structured space skews this such that some semantic values

are seen often while others rarely, thus potentially difficult to remember individually. This

could produce a kind of ‘blur’ of semantic values such that it is difficult to categorise the

7The idea that the order of generalisations matter for what kind of compositionality is possible is reminis-
cent of Raviv et al. (2019)’s expanding meaning space.
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overlap structured
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Figure 4.2: The smaller coloured dots represent each participant’s edit distance from the
correct label for the upper and lower red spots as shown in Figure 4.1. The larger black
dot shows the overall mean.

values and dimensions correctly, thus obstructing the formation of a useful combinatorial

space from which to generalise. Interestingly, this would not just prevent generalisation,

but learning holistic object-label pairings would also be difficult since the semantic feature

values that characterise the image would be ‘blurred’. This is especially understandable

considering the semantic space my participants had to structure, i.e., a bunch of similar,

and potentially very confusable aliens. Further, this could partially explain why partici-

pants in the structured condition struggled to learn the labels for the 9 constantly reoccur-

ring familiar aliens. If this is the case, overlap could facilitate semantic combinatoriality

which in turn could facilitate learning (both compositional and noncompositional labels). I

will now consider some potential improvements on experimental design and theory.
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4.4 Potential improvements and future research

It could be that the experimental design prevented significant differences between the

conditions from emerging8. For instance, for English speakers the labels might be too

uniformly foreign, making their distinctiveness hard to parse (see Section 2.2.2). Sim-

ilarly, each label being a synthetic three-morpheme string might not be ideal. Further,

learning a grammar about different aliens’ characteristics might be less natural than, e.g.,

scenes with agents, patients, and events (e.g., Tal and Arnon 2022). Regarding the-

ory, there are also some interesting unknowns. First, given the nonsignificant p-values, it

might be that the measures did not apply properly to this task. For instance, overlap might

only facilitate generalisation in syntactic space (Reeder et al., 2013), or, unexpected ef-

fects could arise from using two combinatorial systems at once (see 1.1). Moreover,

Smith et al. (2003)’s structure might not demonstrate the effect of AIHD, but rather the

number of distinct values within a space and the relative exposure to each value (see

Section 1.4.2). Lastly, while I have focused on generalisation as a measure of composi-

tionality, there are probably many mechanisms beyond generalisation that contribute to

both i-compositionality, and e-compositionality in natural language. These would all be

important aspects to consider in future research on the emergence of compostionality.

4.5 Conclusion

In this thesis, I have explored part of a largely unexplored factor in the emergence of

compositionality, i.e., the structure of the meaning space. While selection pressures like

expressivity and learnability have been attested in artificial language learning through

modifications of how the language is transmitted, little attention has been paid to the role

of structure in the forms and meanings that shape the language. In my experiment, I draw

on two quite different measures of how to induce combinatoriality in semantic or syntac-

tic spaces. The first, Smith et al. (2003)’s structure has previously been demonstrated

to increase compositionality in an iterated learning model. The second, Reeder et al.

(2013)’s overlap has been used to maximise participants’ ability to generalise across an
8Some might reject the functionality of artificial language learning (e.g., de Vries et al. 2008), however,

the dominant view seems to support a useful relationship to natual language (Gómez and Gerken 2000;
Bahlmann et al. 2008; Friederici et al. 2011; Misyak et al. 2010; Ettlinger et al. 2016).
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entire space. Using the online crowdsourcing website Prolific, I recruited 26 participants

for each measure condition, where each participant was trained on subsets of a fully reg-

ular compositional space. The results were inconclusive but indicated that generalisation

and learning in general was easier when trained on an overlap space where semantic

values are equally spread across a space. This could suggest that overlap facilitates

the emergence of semantic combinatoriality a prerequisite for compositionality, which is

in turn could arise as a consequence of specific parameters, e.g., number of semantic

features and degree of exposure to each value. Along with these specific parameters, I

suggest that future research should focus on how mechanisms other than generalisation

contribute to different kinds of compositionality.
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